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Random walks with feedback on fractal lattices
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We study numerically a random walk under the competitive processes of a self-organized feedback coupling,
characterized by a strengthand an underlying fractal lattice. Whereas a fractal structure favors a subdiffusive
behavior, a dynamical feedback leads either to localization in case of an attractive feedbdatkor to
superdiffusion for a repulsive memory strengthc0. Under the influence of both processes the dynamical
exponentz is changed. For a Sierpinski gasket or a Sierpinski carpet with repulsive feedback coupling we get
2/z=1.04 or 2= 1.08, respectively. When an attractive feedback is dominant, the system offers localization as
in the case of a random walk in regular lattices. The numerical results are strongly supported by analytical
studies based on scaling arguments.
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I. INTRODUCTION is superdiffusive, meaning that the averaged square displace-
ment grows faster than conventional diffusion. In the oppo-
Anomalous diffusion can be attributed to various reasonssite case the process may be subdiffusive determined by an
From a more mathematical point of view, either anomalousxponentz>2, the random walk becomes slower. In accord-
diffusion is related to Ley flights with a well defined power ing to the renormalization group results the numerical ap-
law distribution of waiting times and jump lengths or the proach gave rise to a superdiffusive behavior with an expo-
diffusion is realized on a fractal lattice, for instance, on annentz=4/3 in a one-dimensional spacg=1. Based on a
infinite cluster close to the percolation threshold. Obviously,one-loop approximation within ar=2—d expansion, it
stochastic force fields are also able to generate anomaloggves|[3]
diffusion below a critical dimensiom. [1,2]. Instead of a
spatial varying random force term, a feedback coupling due 2 2—d
to a memory of a random walker to its local environment at 7 1+ T2 )
a previous time can be likewise the reason for anomalous
diffusion. That case had been discussed by an analytical aguch a behavior is observed in case of a negative feedback-
proach based on a renormalization group calculd®nThe  coupling strengtt. <0, see Eq(4) below. Such a repulsive
results could be confirmed by numerical simulatigds5]. ~ memory means that the walker tends to prevent previously
Furthermore, the numerical simulations are able to give morgisisted regions. If the feedback is attractixe> 0, both the
information than the one-loop renormalization group ap-numerics[4,5] as well as the renormalization group method
proach. In particular, one could find the crossover regior3] offer localization, i.e., after a certain initial time the
from conventional diffusion to the memory dominated be-mean-square displacement remains constant or with other
havior. We get also a confirmation for the occurrence of lowords the dynamical exponettt) is z— . Let us stress that
calization, which has been argued within the renormalizatiorbur approach with a feedback coupling bears resemblance to
group approach for by a runaway situation leading to a dythe true self-avoiding walk considered successful in the
namical exponentz—-ce, compare Eq.(1). Moreover, the 1980s by several authofs,7]. In the model a traveler had
simulation yields even a clear indication for logarithmic cor-peen studied who steps randomly, however, avoiding sites
rections expected at the critical dimensiah=2. The visited already. Different from that approach we have en-
asymptotic behavior of the mean-square displacement is gotiosed an additional feedback in or approach to mimick the

erned by a power law memory effects. The feedback is nonlocal in times and, fur-
) ) thermore, determined in a self-organized manner by the
(re(t))~t== (1)  probability to find a traveler at a certain spatial point at a

certain time. Therefore it seems to be worth considering a

The mean-square displacement of the walker, averaged oveombination between feedback coupling and fractality of the

many configurations and starting points, is mainly characterunderlying spatial structure. The random walk on fractals is

ized by the exponert The exponent is changed due to thewidely discussed in a diverse variety of physical situations

presence of the feedback coupling. Kx<<2 the transport ranging from growth phenomena in both regular and disor-
dered systems, to heterogeneous catalysis and other chemical

reactions and to applications in biology and medicine. The
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dangling ends in the fractals, the motion of a random walker ) ¢,

is slowed down on all length scalg8). Instead of Eq(1) the dP(r,t)=DV P(r,t)—)\foP (r=r',t=t")ay

mean-square displacement is described by a new exponent

d,,, the walker exponent, defined by X P(r',t")d%'dt’. 4
<r2(t)>wt2/dw_ 3) In deriving the form of the memory term we are following a

line given first in[17]. Generally, the memory term in the

Nakajima-Zwanzig equation can be written AK(r—r’,t
The fractal dimension of the random watk, is always —t")d,P(r’,t")d%'dt’. To proceed we have adopted argu-
greater than 2 indicating subdiffusive behavior. Whereas in Ments of the mode_coup”ng approach by which progress had
recent study{12] the authors have discussed self-avoidingbeen achieved in explaining various phenomena in the vicin-
walks on Sierpinski lattices in two and three dimensions, wety the glass transition of supercooled liquids3,19. As the
present simulations on those fractal structures under the inmain assumption we suppose that the memory is self-
clusion of feedback effects which lead in the special case ofrganized by all the other particles of the system which be-
a repulsive feedback to the so-called true Self-avoiding Wa”have in the same manner as the one under consideration.
[6,7]. In doing so we are faced with a competition betweenTherefore, the relevant time and spatial scales of the memory
the tendency to slow down the motion due to the fractalityshould be essentially determined by the probability density
and to an acceleration due to a repulsive memory. For thap(r t) itself. Expanding the memory kernel with respect to
reason we extend our previous simulati¢asS] by consid-  p, the most relevant term is given I§(P)~= P2 according to
ering the random walk on a fractal lattice. In case of anthe mode-coupling theorj17—20. Higher order terms can
attractive feedback both effects, the hopping process on also occur but they are irrelevant in the renormalization
fractal as well as the feedback, tend to cause a slowdown Qfroup approact3]. Due to the feedback coupling, mani-
the motion. Therefore, one should expect more pronouncefésted by the memory term in E¢d) the motion of a single
localization effects. In the opposite case of a repulsive feedparticle is influenced apparently. The probability to find a
back strength, leading to a superdiffusive behavior on a reglgertain particle at the pointat timet is also determined by
lar lattice, the dynamical exponentfor the diffusion on a the probability to observe the particle in the surroundings
fractal lattice is determined by two conflicting processes, arprior to the actual observation atThe influence of the feed-
acceleration originated by the memory and a slowdown dugack term can be estimated. If the particle offers the ten-
to the underlying fractal structure. Therefore, it is our aim togency to leave the spatial point’ at time t’, i.e.
nant one. Physically, this phenomena can be expected in cagg>0) enhances the probability a®(r,t). A positive
of the cation diffusion in glasses that offer a strong memorymemory strength favors the return of the particle to a certain
[13]. Accordingly, diffusion in glasses is discussed as an inpoint during a sufficiently long time interval. In the opposite
trachannel hopping on fractal-like networks. Furthermorecase, a negative memory €0) should prevent strongly the
such a behavior can be observed likewise in porous medigstum to a site initially occupied. As discussed above, the
[14]. ) ) ] . basis mechanism is similar to true self-avoiding wigsk7].

The aim of the present paper is to verify the competitionowever in our approach the memory kernel is defined via
between anomalous diffusion effects caused by several phese quantityP(r,t) itself and, moreover, the behavior of the
nomena, namely, subdiffusion induced by fractal spatiakystem is discussed depending on the sign of the feedback
structures and either superdiffusion or even localizationerm_ |t results in either superdiffusion for a repulsive feed-
originated by the above mentioned memory effects. The reayack term or alternatively subdiffusion or localization in case
son to focus the study on deterministic fractals is twofold.y 5n attractive memory. Such a behavior had been observed
On one hand such fractals allow to minimize the finite sizejn, more detail by applying a dynamical renormalization
effects within the numerical approach, and on the other hanaroup approachi3]. As the result the authors found a super-
the results can be directly compared with those obtained fog;tfysive behavior in case of a repulsive memory strength,
the self-avoiding walks on the Sierpinski lattidd<]. \<0, where the dynamical exponent is given by EZ. For
an attractive memory\>0, the renormalization group ap-
proach suggested localization characterized-by=. As al-
ready stressed before, simulations on a regular lattice have

An analytical approach for a random walk under the in-supported the analytical resulgd,5]. Now, we extend the
fluence of feedback effects based on a generalized Fokkeanalysis by including fractal lattices. Because an analytical
Planck equation, recently proposed [8]. The nonlinear approach is not available up to now we have made numerical
equation with memory effects, known as the Nakajima-simulations. Before we present the results, let us estimate the
Zwanzig equatioh15], can be derived by applying a suitable influence of the fractality of the lattice. To that aim we have
projection operator on the total probability distribution in theto discuss a relation between the walker exportgnt see
phase spacgl6]. IntroducingP(r,t) as the probability den- Eg.(3) and the exponerztin Eq. (1), which is determined by
sity to find a particle at time in an interval around the the spatial dimension, compare E8). On a fractal lattice it
spatial pointr the evolution equation for the single-particle should be a reasonable approximation to replace the dimen-
distribution reads siond in Eq. (2) by the fractal dimensiod; . Transport on a

Il. ANALYTICAL APPROACH
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fractal lattice can be interpreted as transport with an effectivder that accumulates all previous visits of that bond. The
waiting time, i.e., the time scale has to be rescaled to eliminumber, called the local visiting number, is used as a mea-
nate such waiting time effects. Introducing a new time scalesure for the probability of a renewed visit of the same lattice
according to bond. Whereas in case of a positive feedback couplatg
traction the probability becomes higher with increasing

T=1t2 (5) sits, i i i
' number of visits, it decreases if the memory strength is nega-
we get tive or repulsive. Using the elementary time stép, the
discrete time scale is given by=né7 (n=0,1,2...). The
(f2)~t2/dW~T- (6) diffusion is now defined by randomly chosen jumps between

) ) neighbored fractal lattice sites after each discrete time step.
The assumption that on the new time scale the mean-squafi® include the memory effects, let us define local visiting
displacement is similar to that of a random walk on aregmarnumbersbij characterizing the bonds between the neigh-
lattice leads tdr?)~T. Considering the dynamical exponent pored lattice sites and]. The transition rates fromto j and

under the inclusion of a memory asz,,,, given by Eq.(2),  fromj to i, respectively, for a particle are given by
the memory effect can be described by a further scaling law

by which the mean-square displacement will be related to the fo— bj; d fo— bj; 10
new time scale{r2)~T?m, Combining Eqs(2), (5), and(6) i an i : (10
we find (r2)~t?2 with 24 b 2, by
7= d—W (7)  wherek(j) means summation over all nearest neightsoos
14 2—d; the lattice sitei. Thus,=,tix=1, i.e., the total probability
2 for a jump of a particle is always 1. The initial values of the

. . . bj; are given byb;; =1 for all neighbored fractal lattice sites.
As explained above we have replaced the dimendibythe  |f ‘the visiting numbers remain unchanged, one obtains a
corresponding fractal dimensial . Based on the last rela- simple fractal random walk. To obtain a memory effect, we
tion we can estimate the expected valuesz ¢br different  introduce a self-induced change of the visiting numbers,
fractal lattices. For instance, a Sierpinski gasket is charactewhich causes the feedback of the particle on the environ-
ized by di=In3/In2. The walker dimension isd,  ment. That means, the quantity now becomes time depen-
=In5/In2. From here we conclude a dynamical exporent dent. After each time step we redefine the local visiting num-
=1.9221 or ber using the rules

221.0405. ®) bjj(t+ o7) # by ()

if the actual jump crosses the bond betweéemdj,

The same estimation for a Sierpinski carpet, sometimes de; —ho( :
noted as Menger sponge when embedded i@ matrix, bij(t+d7)=D;;(t) if the actual jump crosses another bond.

with the fractal dimension d;=In8/In3 and d, (D

=In(28/3)/In 3 leads t@=1.9296 or The first rule must be specified: a positive memory is defined
2 by a changé;; (t+ 67)>bj;(t), a negative memory requires
E=1.0365. (9)  byj(t+7)<bjj(t). These time dependent visiting numbers

break the local symmetry of the transition rates, i.e., the rates

for jumps from a given point to neighbored sites may be

differ after sufficiently long time. Clearly, a multiple crossing

of a bond leads to an accumulation effect which increéses

decreasesthe local visiting numbers remarkably, also if
IIl. NUMERICAL APPROACH |bjj(t+ 67) —bjj(t)|<bjj(t). It can be expected that this ac-

In this paper we focus our attention on the diffusion oncumulation supports the generation ofself-induced local-

deterministic fractals. Especially, we use the Sierpinski gasization (in the case of a positive memorgr a superdiffusion

ket and the Sierpinski carpet for our simulation to minimize (Négative memory This memory effect superposes the

finite size effects. In principle, the numerics can be extende@nomalous diffusion due to the fractal structure of the under-

to more refined structures as random fractals or treelike one¥/ing lattice. The final character of the diffusion in the case

However, the main goal of the paper is to study the compe®f @ fractal subdiffusion and superdiffusional memory effects

tition between the subdiffusive behavior originated by thelS determined by their strengths.

fractality and the superdiffusive effects due to the feedback

mechanism. Here, we adopt the method recently applied for IV. RESULTS

simulations on regular latticdg,5] to fractals. The motion

of the tracer particle is defined by a series of discrete jumps

in discrete time intervals. The feedback coupling is intro- We use the following quantitative rule: each crossing of a

duced by marking each visited lattice bond by a certain numbond (j) by the particle changes the corresponding visiting

In the following section we will test the conjecture of K@)
using numerical simulations.

A. Superdiffusion
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FIG. 1. Averaged mean-square displacement for a repulsive FIG. 3. Master curve of the mean-square displacements depicted
memory  with  strength ¢=0.0001,0.007,0.02,0.04,0.07,0.1, in Fig. 1 with negative feedback. The collapse of all curves indi-
0.2,0.4,0.7bottom up on a Sierpinski gasket wittiy=In3/In2 and  cates strongly a universal behavior.
2/z=1.04. The deviations at the long time limit are caused by finite
size effects. placement shows the original fractal diffusion for a short

time interval and small values of the feedback parameter
number viabj; —bj;(1—¢), with the feedback parameter O After a well defined crossover time, ¢,{¢) the superdiffu-
<e<1. Here, the quantity is a measure for the memory sjye regime is achieved with the universal exponert 2/
strength. Such a relation generates a negative men@ry.  =1.04+0.02 for a Sierpinski gasket andz2/1.08+0.02 for
The control parametet determines the coupling between the Sierpinski carpet, respectively. The dynamical exponents
particle and environments(=0 corresponds to pure fractal are in reasonable agreement with the estimations given by
diffusion). We expect that each#0 leads always to a su- Eqs.(8) and(9) obtained by simple scaling arguments based
perdiffusive contribution to the anomalous fractal diffusion on Eq.(7). Furthermore, a rescaling of time and coordinates
behavior. Thus, the numerical simulations were realized fofeads to a collapse of all curves presented in Fig. 3 onto a
various values of the quantity. In Fig. 1 we have depicted scaling functiond ~, i.e., we obtain the general representa-
the mean-square displacement for a Sierpinski gasket witfjon
the fractal dimensiow;=1In 3/In 2 and the walker dimension
d,=In5/In2. The same quantity is presented in Fig. 2 for a n_ 2 _
Sierpinski carpet withd;=In8/In3 andd,,=In(28/3)/In 3. (ro)=p(e)® oo’
The determination of the time dependent mean-square dis- ’

with @~ =s?w for s—0 and® ~(s)=s%* for s—. Such a
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FIG. 2. Averaged mean-square displacement for a negative feed-
back strengthe =0.0001,0.02,0.04,0.07,0.1,0.2,0.4,0ffom the FIG. 4. Mean-square displacement for an attractive feedback on
bottom up on a Sierpinski carpet wittd;=In8/In3 and 2Z a Sierpinski gasket withe =0.0001,0.02,0.04,0.1,0.2,0.4,0(fbp
=1.08. down). It results in localization for a sufficiently long time interval.

031106-4



RANDOM WALKS WITH FEEDBACK ON FRACTAL LATTICES

<A

10? 10°
time

FIG. 5. Mean-square displacement for a positive feedback on
Sierpinski carpet  with ¢=0.0001,0.01,0.02,0.04,0.07,0.1,
0.2,0.4,0.7(top down), which always shows localization.
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FIG. 6. Master curve of the mean-square displacements drawn
in Fig. 4 with positive feedback strength.

the asymptotic limit. We have demonstrated, using a numeri-

behavior is observed in Fig. 3 for a Sierpinski gasket. Acal approach, that the diffusive behavior is changed drasti-

similar behavior can be obtained for the Sierpinski carpet.

B. Localization

In case of an attractive memory(e) the feedback is
simulated by the ruld;;—bj;(1+¢) with e>0. Both, the
renormalization group approa¢8] as well as the numerical
analysig4,5] gave evidence for a localization of the particle
in a region around the initial position in case of using a
regular lattice. In the present case the mean-square displa
ment offers likewise a fractal diffusive behavior in the short

time regime. However after a crossover tirﬁ@,oc(s) the

Rl

cally due to the underlying fractal lattice and the memory.
The reason for that variation is a competition between time
delay effects and the fractality. As far as the fractal dimen-
sion of the latticed; is smaller than a critical dimensiat.,

the motion of a walker is strongly influenced by the memory
as well as by the fractal properties. In case of a negative
memory strength, which can be considered as a kind of re-
pulsion for a walker, the combination of both memory effects
and the fractal lattice lead to a superdiffusive behavior. Thus
e feedback dominates the behavior of the system. When a
particle, moving through a fractal lattice, is subjected to an
attractive memory strength, it tends to come back to a lattice

curve approaches a constant value which indicates localizaite visited already before. In this case that feedback cou-

tion, see Fig. 4 for the Sierpinski gasket and Fig. 5 for th

®ling gives rise to localization characterized by a constant

Sierpinski carpet, respectively. Both figures suggest a |°Ca|mean-square displacement in the time asymptotic limit.

ization radiusr defined by Iian\/(rz)~7(s). A rescaling

Whereas the walker offers diffusive behavior in the initial

of time and coordinates leads again to a collapse of all curved&me interval there is a crossover to a feedback dominated

onto the scaling functionb*, i.e., we obtain the general
representation
TC,|OC(£)) ,

with @ (s)=s?"w for s—0 and® " (s)=1 for s—. This

<r2>=~rz(s)<b*( (13)

regime, which indicates localization. In that case the feed-
back effects are so strong that the diffusion will be stopped
and the particle becomes fixed on average within a finite
spatial interval. Such a behavior should be of interest also in
large percolation clusters in the vicinity of the percolation

threshold or in growth processes in biological systems. A
further extension of our approach should be the inclusion of
disorder effects originated by external force fields or pinning

behavior is represented in Fig. 6 for the Sierpinski gasket. I¢ffects within the lattice. Analytically, Eq4) could be gen-

our model we find?(s):rgvlvoc(s), whered,, is the walker
dimension in case of pure fractal diffusion.

V. CONCLUSION

eralized by including the fractional derivative operator as it
had been discussed in recent papers, see, for instance, Ref.
[21], where the evolution of the probability density is dis-
cussed using the fractional Fokker-Planck equation.

In the present paper we have extended previous studies on
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