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Random walks with feedback on fractal lattices
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We study numerically a random walk under the competitive processes of a self-organized feedback coupling,
characterized by a strengthl and an underlying fractal lattice. Whereas a fractal structure favors a subdiffusive
behavior, a dynamical feedback leads either to localization in case of an attractive feedback,l.0, or to
superdiffusion for a repulsive memory strengthl,0. Under the influence of both processes the dynamical
exponentz is changed. For a Sierpinski gasket or a Sierpinski carpet with repulsive feedback coupling we get
2/z51.04 or 2/z51.08, respectively. When an attractive feedback is dominant, the system offers localization as
in the case of a random walk in regular lattices. The numerical results are strongly supported by analytical
studies based on scaling arguments.
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I. INTRODUCTION

Anomalous diffusion can be attributed to various reaso
From a more mathematical point of view, either anomalo
diffusion is related to Le´vy flights with a well defined power
law distribution of waiting times and jump lengths or th
diffusion is realized on a fractal lattice, for instance, on
infinite cluster close to the percolation threshold. Obvious
stochastic force fields are also able to generate anoma
diffusion below a critical dimensiondc @1,2#. Instead of a
spatial varying random force term, a feedback coupling d
to a memory of a random walker to its local environment
a previous time can be likewise the reason for anomal
diffusion. That case had been discussed by an analytica
proach based on a renormalization group calculation@3#. The
results could be confirmed by numerical simulations@4,5#.
Furthermore, the numerical simulations are able to give m
information than the one-loop renormalization group a
proach. In particular, one could find the crossover reg
from conventional diffusion to the memory dominated b
havior. We get also a confirmation for the occurrence of
calization, which has been argued within the renormalizat
group approach for by a runaway situation leading to a
namical exponentz→`, compare Eq.~1!. Moreover, the
simulation yields even a clear indication for logarithmic co
rections expected at the critical dimensiondc52. The
asymptotic behavior of the mean-square displacement is
erned by a power law

^r 2~ t !&;t2/z. ~1!

The mean-square displacement of the walker, averaged
many configurations and starting points, is mainly charac
ized by the exponentz. The exponent is changed due to t
presence of the feedback coupling. If 1,z,2 the transport
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is superdiffusive, meaning that the averaged square displ
ment grows faster than conventional diffusion. In the opp
site case the process may be subdiffusive determined b
exponentz.2, the random walk becomes slower. In acco
ing to the renormalization group results the numerical
proach gave rise to a superdiffusive behavior with an ex
nent z54/3 in a one-dimensional space,d51. Based on a
one-loop approximation within ane522d expansion, it
gives @3#

2

z
511

22d

2
. ~2!

Such a behavior is observed in case of a negative feedb
coupling strengthl,0, see Eq.~4! below. Such a repulsive
memory means that the walker tends to prevent previou
visisted regions. If the feedback is attractive,l.0, both the
numerics@4,5# as well as the renormalization group meth
@3# offer localization, i.e., after a certain initial time th
mean-square displacement remains constant or with o
words the dynamical exponent~1! is z→`. Let us stress tha
our approach with a feedback coupling bears resemblanc
the true self-avoiding walk considered successful in
1980s by several authors@6,7#. In the model a traveler had
been studied who steps randomly, however, avoiding s
visited already. Different from that approach we have e
closed an additional feedback in or approach to mimick
memory effects. The feedback is nonlocal in times and, f
thermore, determined in a self-organized manner by
probability to find a traveler at a certain spatial point at
certain time. Therefore it seems to be worth considerin
combination between feedback coupling and fractality of
underlying spatial structure. The random walk on fractals
widely discussed in a diverse variety of physical situatio
ranging from growth phenomena in both regular and dis
dered systems, to heterogeneous catalysis and other che
reactions and to applications in biology and medicine. T
literature is quite extensive and includes several bo
@8–11#. Due to the presence of large holes, bottlenecks,
©2002 The American Physical Society06-1
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dangling ends in the fractals, the motion of a random wal
is slowed down on all length scales@8#. Instead of Eq.~1! the
mean-square displacement is described by a new expo
dw , the walker exponent, defined by

^r 2~ t !&;t2/dw. ~3!

The fractal dimension of the random walkdw is always
greater than 2 indicating subdiffusive behavior. Whereas
recent study@12# the authors have discussed self-avoidi
walks on Sierpinski lattices in two and three dimensions,
present simulations on those fractal structures under the
clusion of feedback effects which lead in the special case
a repulsive feedback to the so-called true self-avoiding w
@6,7#. In doing so we are faced with a competition betwe
the tendency to slow down the motion due to the fracta
and to an acceleration due to a repulsive memory. For
reason we extend our previous simulations@4,5# by consid-
ering the random walk on a fractal lattice. In case of
attractive feedback both effects, the hopping process o
fractal as well as the feedback, tend to cause a slowdow
the motion. Therefore, one should expect more pronoun
localization effects. In the opposite case of a repulsive fe
back strength, leading to a superdiffusive behavior on a re
lar lattice, the dynamical exponentz for the diffusion on a
fractal lattice is determined by two conflicting processes,
acceleration originated by the memory and a slowdown
to the underlying fractal structure. Therefore, it is our aim
measure the exponentz to decide which effect is the domi
nant one. Physically, this phenomena can be expected in
of the cation diffusion in glasses that offer a strong mem
@13#. Accordingly, diffusion in glasses is discussed as an
trachannel hopping on fractal-like networks. Furthermo
such a behavior can be observed likewise in porous m
@14#.

The aim of the present paper is to verify the competit
between anomalous diffusion effects caused by several
nomena, namely, subdiffusion induced by fractal spa
structures and either superdiffusion or even localizati
originated by the above mentioned memory effects. The
son to focus the study on deterministic fractals is twofo
On one hand such fractals allow to minimize the finite s
effects within the numerical approach, and on the other h
the results can be directly compared with those obtained
the self-avoiding walks on the Sierpinski lattices@12#.

II. ANALYTICAL APPROACH

An analytical approach for a random walk under the
fluence of feedback effects based on a generalized Fok
Planck equation, recently proposed by@3#. The nonlinear
equation with memory effects, known as the Nakajim
Zwanzig equation@15#, can be derived by applying a suitab
projection operator on the total probability distribution in t
phase space@16#. IntroducingP(r ,t) as the probability den-
sity to find a particle at timet in an interval around the
spatial pointr the evolution equation for the single-partic
distribution reads
03110
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] tP~r ,t !5D¹2P~r ,t !2lE
0

t

P2~r2r 8,t2t8!] t8

3P~r 8,t8!ddr 8dt8 . ~4!

In deriving the form of the memory term we are following
line given first in @17#. Generally, the memory term in th
Nakajima-Zwanzig equation can be written as*K(r2r 8,t
2t8)] t8P(r 8,t8)ddr 8dt8. To proceed we have adopted arg
ments of the mode-coupling approach by which progress
been achieved in explaining various phenomena in the vi
ity the glass transition of supercooled liquids@18,19#. As the
main assumption we suppose that the memory is s
organized by all the other particles of the system which
have in the same manner as the one under considera
Therefore, the relevant time and spatial scales of the mem
should be essentially determined by the probability den
P(r ,t) itself. Expanding the memory kernel with respect
P, the most relevant term is given byK(P).P2 according to
the mode-coupling theory@17–20#. Higher order terms can
also occur but they are irrelevant in the renormalizat
group approach@3#. Due to the feedback coupling, man
fested by the memory term in Eq.~4! the motion of a single
particle is influenced apparently. The probability to find
certain particle at the pointr at time t is also determined by
the probability to observe the particle in the surroundin
prior to the actual observation att. The influence of the feed
back term can be estimated. If the particle offers the t
dency to leave the spatial pointr 8 at time t8, i.e.
] t8P(r 8,t8),0, then an attractive memory coupling streng
(l.0) enhances the probability atP(r ,t). A positive
memory strength favors the return of the particle to a cert
point during a sufficiently long time interval. In the opposi
case, a negative memory (l,0) should prevent strongly the
return to a site initially occupied. As discussed above,
basis mechanism is similar to true self-avoiding walk@6,7#.
However in our approach the memory kernel is defined
the quantityP(r ,t) itself and, moreover, the behavior of th
system is discussed depending on the sign of the feedb
term. It results in either superdiffusion for a repulsive fee
back term or alternatively subdiffusion or localization in ca
of an attractive memory. Such a behavior had been obse
in more detail by applying a dynamical renormalizatio
group approach@3#. As the result the authors found a supe
diffusive behavior in case of a repulsive memory streng
l,0, where the dynamical exponent is given by Eq.~2!. For
an attractive memory,l.0, the renormalization group ap
proach suggested localization characterized byz→`. As al-
ready stressed before, simulations on a regular lattice h
supported the analytical results@4,5#. Now, we extend the
analysis by including fractal lattices. Because an analyt
approach is not available up to now we have made numer
simulations. Before we present the results, let us estimate
influence of the fractality of the lattice. To that aim we ha
to discuss a relation between the walker exponentdw , see
Eq. ~3! and the exponentz in Eq. ~1!, which is determined by
the spatial dimension, compare Eq.~2!. On a fractal lattice it
should be a reasonable approximation to replace the dim
siond in Eq. ~2! by the fractal dimensiondf . Transport on a
6-2
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fractal lattice can be interpreted as transport with an effec
waiting time, i.e., the time scale has to be rescaled to eli
nate such waiting time effects. Introducing a new time sc
according to

T5t2/dw, ~5!

we get

^r 2&;t2/dw;T. ~6!

The assumption that on the new time scale the mean-sq
displacement is similar to that of a random walk on a regu
lattice leads tô r 2&;T. Considering the dynamical expone
under the inclusion of a memory asz5zm , given by Eq.~2!,
the memory effect can be described by a further scaling
by which the mean-square displacement will be related to
new time scale:̂r 2&;T2/zm. Combining Eqs.~2!, ~5!, and~6!

we find ^r 2&;t2/z with

z5
dw

11
22df

2

. ~7!

As explained above we have replaced the dimensiond by the
corresponding fractal dimensiondf . Based on the last rela
tion we can estimate the expected values ofz for different
fractal lattices. For instance, a Sierpinski gasket is charac
ized by df5 ln 3/ln 2. The walker dimension isdw
5 ln 5/ln 2. From here we conclude a dynamical exponenz
51.9221 or

2

z
51.0405. ~8!

The same estimation for a Sierpinski carpet, sometimes
noted as Menger sponge when embedded in ad53 matrix,
with the fractal dimension df5 ln 8/ln 3 and dw
5 ln(28/3)/ln 3 leads toz51.9296 or

2

z
51.0365. ~9!

In the following section we will test the conjecture of Eq.~7!
using numerical simulations.

III. NUMERICAL APPROACH

In this paper we focus our attention on the diffusion
deterministic fractals. Especially, we use the Sierpinski g
ket and the Sierpinski carpet for our simulation to minimi
finite size effects. In principle, the numerics can be exten
to more refined structures as random fractals or treelike o
However, the main goal of the paper is to study the com
tition between the subdiffusive behavior originated by t
fractality and the superdiffusive effects due to the feedb
mechanism. Here, we adopt the method recently applied
simulations on regular lattices@4,5# to fractals. The motion
of the tracer particle is defined by a series of discrete jum
in discrete time intervals. The feedback coupling is int
duced by marking each visited lattice bond by a certain nu
03110
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ber that accumulates all previous visits of that bond. T
number, called the local visiting number, is used as a m
sure for the probability of a renewed visit of the same latt
bond. Whereas in case of a positive feedback coupling~at-
traction! the probability becomes higher with increasin
number of visits, it decreases if the memory strength is ne
tive or repulsive. Using the elementary time stepdt, the
discrete time scale is given byt5ndt (n50,1,2, . . . ). The
diffusion is now defined by randomly chosen jumps betwe
neighbored fractal lattice sites after each discrete time s
To include the memory effects, let us define local visiti
numbersbi j characterizing the bonds between the neig
bored lattice sitesi and j. The transition rates fromi to j and
from j to i, respectively, for a particle are given by

t i j 5
bi j

(
k( i )

bik

and t j i 5
bji

(
k( j )

bjk

, ~10!

wherek( j ) means summation over all nearest neighborsk of
the lattice sitei. Thus,(k( i )t ik51, i.e., the total probability
for a jump of a particle is always 1. The initial values of th
bi j are given bybi j 51 for all neighbored fractal lattice sites
If the visiting numbers remain unchanged, one obtain
simple fractal random walk. To obtain a memory effect, w
introduce a self-induced change of the visiting numbe
which causes the feedback of the particle on the envir
ment. That means, the quantitybi j now becomes time depen
dent. After each time step we redefine the local visiting nu
ber using the rules

bi j ~ t1dt!Þbi j ~ t !

if the actual jump crosses the bond betweeni and j,

bi j ~ t1dt!5bi j ~ t ! if the actual jump crosses another bond
~11!

The first rule must be specified: a positive memory is defin
by a changebi j (t1dt).bi j (t), a negative memory require
bi j (t1dt),bi j (t). These time dependent visiting numbe
break the local symmetry of the transition rates, i.e., the ra
for jumps from a given point to neighbored sites may
differ after sufficiently long time. Clearly, a multiple crossin
of a bond leads to an accumulation effect which increases~or
decreases! the local visiting numbers remarkably, also
ubi j (t1dt)2bi j (t)u!bi j (t). It can be expected that this ac
cumulation supports the generation of a~self-induced! local-
ization~in the case of a positive memory! or a superdiffusion
~negative memory!. This memory effect superposes th
anomalous diffusion due to the fractal structure of the und
lying lattice. The final character of the diffusion in the ca
of a fractal subdiffusion and superdiffusional memory effe
is determined by their strengths.

IV. RESULTS

A. Superdiffusion

We use the following quantitative rule: each crossing o
bond (i j ) by the particle changes the corresponding visiti
6-3
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number viabi j →bi j (12«), with the feedback parameter
,«,1. Here, the quantity« is a measure for the memor
strength. Such a relation generates a negative memoryl(«).
The control parameter« determines the coupling betwee
particle and environment («50 corresponds to pure fracta
diffusion!. We expect that each«Þ0 leads always to a su
perdiffusive contribution to the anomalous fractal diffusi
behavior. Thus, the numerical simulations were realized
various values of the quantity«. In Fig. 1 we have depicted
the mean-square displacement for a Sierpinski gasket
the fractal dimensiondf5 ln 3/ln 2 and the walker dimensio
dw5 ln 5/ln 2. The same quantity is presented in Fig. 2 fo
Sierpinski carpet withdf5 ln 8/ln 3 and dw5 ln(28/3)/ln 3.
The determination of the time dependent mean-square

FIG. 1. Averaged mean-square displacement for a repul
memory with strength «50.0001,0.007,0.02,0.04,0.07,0.
0.2,0.4,0.7~bottom up! on a Sierpinski gasket withdf5 ln 3/ln 2 and
2/z51.04. The deviations at the long time limit are caused by fin
size effects.

FIG. 2. Averaged mean-square displacement for a negative f
back strength«50.0001,0.02,0.04,0.07,0.1,0.2,0.4,0.7~from the
bottom up! on a Sierpinski carpet withdf5 ln 8/ln 3 and 2/z
51.08.
03110
r

th

is-

placement shows the original fractal diffusion for a sh
time interval and small values of the feedback paramete«.
After a well defined crossover timetc,sup(«) the superdiffu-
sive regime is achieved with the universal exponentz
51.0460.02 for a Sierpinski gasket and 2/z51.0860.02 for
the Sierpinski carpet, respectively. The dynamical expone
are in reasonable agreement with the estimations given
Eqs.~8! and~9! obtained by simple scaling arguments bas
on Eq.~7!. Furthermore, a rescaling of time and coordina
leads to a collapse of all curves presented in Fig. 3 ont
scaling functionF2, i.e., we obtain the general represen
tion

^r2&5r2~«!F2S t

tc,sup~«! D , ~12!

with F2.s2/dw for s→0 andF2(s).s2/z for s→`. Such a

e

e

d-

FIG. 3. Master curve of the mean-square displacements dep
in Fig. 1 with negative feedback. The collapse of all curves in
cates strongly a universal behavior.

FIG. 4. Mean-square displacement for an attractive feedbac
a Sierpinski gasket with«50.0001,0.02,0.04,0.1,0.2,0.4,0.7~top
down!. It results in localization for a sufficiently long time interva
6-4
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RANDOM WALKS WITH FEEDBACK ON FRACTAL LATTICES PHYSICAL REVIEW E66, 031106 ~2002!
behavior is observed in Fig. 3 for a Sierpinski gasket.
similar behavior can be obtained for the Sierpinski carpe

B. Localization

In case of an attractive memoryl(«) the feedback is
simulated by the rulebi j →bi j (11«) with «.0. Both, the
renormalization group approach@3# as well as the numerica
analysis@4,5# gave evidence for a localization of the partic
in a region around the initial position in case of using
regular lattice. In the present case the mean-square disp
ment offers likewise a fractal diffusive behavior in the sh
time regime. However after a crossover timet̄c,loc(«) the
curve approaches a constant value which indicates loca
tion, see Fig. 4 for the Sierpinski gasket and Fig. 5 for
Sierpinski carpet, respectively. Both figures suggest a lo
ization radiusr̃ defined by lim

t→`
A^r2&; r̃ («). A rescaling

of time and coordinates leads again to a collapse of all cu
onto the scaling functionF1, i.e., we obtain the genera
representation

^r2&5 r̃ 2~«!F1S t

tc,loc~«! D , ~13!

with F1(s).s2/dw for s→0 andF1(s)51 for s→`. This
behavior is represented in Fig. 6 for the Sierpinski gasket
our model we findr̃ («)5tc,loc

dw («), wheredw is the walker
dimension in case of pure fractal diffusion.

V. CONCLUSION

In the present paper we have extended previous studie
random walks in regular lattices under the influence o
self-organized feedback to random walks in fractal str
tures. In particular, the goal of our analysis had been to
the conjecture that the character of the feedback leads
significant modification of the mean-square displacemen

FIG. 5. Mean-square displacement for a positive feedback o
Sierpinski carpet with «50.0001,0.01,0.02,0.04,0.07,0.
0.2,0.4,0.7~top down!, which always shows localization.
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the asymptotic limit. We have demonstrated, using a num
cal approach, that the diffusive behavior is changed dra
cally due to the underlying fractal lattice and the memo
The reason for that variation is a competition between ti
delay effects and the fractality. As far as the fractal dime
sion of the latticedf is smaller than a critical dimensiondc ,
the motion of a walker is strongly influenced by the memo
as well as by the fractal properties. In case of a nega
memory strength, which can be considered as a kind of
pulsion for a walker, the combination of both memory effec
and the fractal lattice lead to a superdiffusive behavior. Th
the feedback dominates the behavior of the system. Whe
particle, moving through a fractal lattice, is subjected to
attractive memory strength, it tends to come back to a lat
site visited already before. In this case that feedback c
pling gives rise to localization characterized by a const
mean-square displacement in the time asymptotic lim
Whereas the walker offers diffusive behavior in the init
time interval there is a crossover to a feedback domina
regime, which indicates localization. In that case the fe
back effects are so strong that the diffusion will be stopp
and the particle becomes fixed on average within a fin
spatial interval. Such a behavior should be of interest als
large percolation clusters in the vicinity of the percolati
threshold or in growth processes in biological systems
further extension of our approach should be the inclusion
disorder effects originated by external force fields or pinn
effects within the lattice. Analytically, Eq.~4! could be gen-
eralized by including the fractional derivative operator as
had been discussed in recent papers, see, for instance,
@21#, where the evolution of the probability density is di
cussed using the fractional Fokker-Planck equation.
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a
FIG. 6. Master curve of the mean-square displacements dr

in Fig. 4 with positive feedback strength.
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